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Neural network simulation for non-MSMPR crystallization
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Abstract

A neural network model has been developed for the simulation of steady state industrial crystallizers where, in general, the crystal
size distribution cannot be described by simple mass and energy balances, i.e. they are non-MSMPR crystallizers. The model is based on
fundamental equations of steady state suspension crystallization. The parameters in the nucleation rate have been chosen for the simulation
of different chemicals. The particle size distribution of the product is expressed by the Rosin–Rammler equation. Different operating modes
and deviations in crystal size distribution caused by the suspension being imperfectly mixed are presented by different values of modified
Rosin–Rammler number. The ranges of variables in the neural network have been chosen based on data for industrial crystallizers. The
dominant size of particle, and the productivity of the crystallizer can be predicted with input information. Thus, this neural network can be
used for most chemicals and for different kinds of operating conditions. The results predicted with the neural network have been verified
by solving the fundamental equations and by comparison with experimental data. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fast simulation of a process is very useful for process
optimization and control and the neural network is a pow-
erful tool for fast simulation of complex processes. After
the neural network has been trained, the training program is
no longer needed. Only the weight file and the short neural
network code are required to simulate the process. It is easy
to transfer the neural network code to other programs to
present the results as figures. The neural network can re-
spond to the input variables very fast and gives simulation
results over a wide range of variables. Industrial crystal-
lization includes mass and heat transfer with complicated
nucleation and growth processes and is affected by many
factors, mainly kinetic parameters, mixing conditions and
operating conditions. Simulating and controlling the crys-
tallization process in an industrial crystallizer becomes very
complicated. Many simulation programs have been devel-
oped for various crystallization processes [1,2]. However
only a few works have tried to simulate the crystallization
process using a neural network for the control of a dis-
tributed parameter crystal growth process [3]. The aim of
this work is to develop a neural network for simulation of
a continuous process in a non-ideal industrial crystallizer
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so that the result can be used as a basic tool for optimizing
and controlling continuous crystallization.

2. Theory of the neural network used

For decades, much progress has been made in under-
standing the crystallization process. In a continuous crystal-
lization process, when the system is operated under steady
state, the basic properties of the particle and solution, the
basic parameters in the crystal growth rate and nucleation
rate, and basic operation conditions all affect the particle
size distribution in the product. For a description of the
solid product, the production rate and the particle size
distribution are important. There are many mathematical
expressions that can be used to describe the particle size
distribution [1]. Toyokura [4] has used the Rosin–Rammler
equation to describe the particle size distribution in the
product. In the Rosin–Rammler equation the modified uni-
formity number,m, and the dominant size of particles have
been used to express the particle size distribution. The value
of the modified uniformity number,m, is dependent on the
operation mode of the crystallizer. In the ideal case the
uniformity number is unity, and then the equations become
the conventional ones, e.g. those studied by Randolph and
Larson [1] in their study of MSMPR (mixed suspension
mixed product removal) crystallizers. There are also inter-
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Nomenclature

B nucleation rate (#/m3 s)
C0 feed concentration (kg/m3)
C∗ equilibrium concentration (kg/m3)
1C supersaturation (kg/m3)
D impeller diameter (m)
G crystal growth rate (m/s)
i the power of the crystal growth rate

in nucleation rate model (–)
j the power of the suspension density in

nucleation rate model (–)
k the power of the impeller tip speed in

nucleation rate model (–)
K product of the crystal density and

volume shape factor (–)
KN constant in nucleation rate model (–)
Kv volume shape factor of crystal (–)
Ld dominant size of crystals (m)
MT suspension density (kg/m3)
N stirrer speed (1/min)
p productivity (kg/m3 s)
P production rate (kg/s)
V volume of crystallizer (m3)
V0 feed rate (m3/s)
Vt impeller tip speed (m/s)
Vw evaporation rate (m3/s)

Greek letters
ε volume fraction of solution (–)
ρc crystal density (kg/m3)
t residence time (s)

actions between the crystal growth rate, nucleation rate and
operation conditions in the crystallization process.

In this work, a neural network is developed based on
the Toyokura theory [4], which has been proved useful by
many industrial crystallizer data and has been used for the
successful design of many industrial crystallizers. The theory
and the basic equations are as follows.

A continuous crystallizer is supposed to be operated under
steady state conditions and the cumulative size distribution
of the product crystal is assumed to be expressed by the
Rosin–Rammler equation on population basis as

r = exp

(
− L

L∗

)m

= exp(−xm) (1)

wherer is the relative cumulative number of product crys-
tals,m the modified uniformity number, which is a constant
particular for each product (it is independent of particle size),
L the size of crystal,L∗ the particle size corresponding tor
of 0.3679, which is independent of the value of the modi-
fied uniformity number,x the dimensionless size of crystal
x = L/L∗.

Based on this assumption, the production rate, crystallizer
volume, nucleation rate, growth rate, and the parameters of
the Rosin–Rammler equation are related. The relationship
has been based on the population balance, and mass balance
as given by Toyokura and Sakai [4]:

P

ρcV
= L∗3Bkvm

∫ ∞

0
xm+2exp(−xm) dx (2)

PL∗∫ ∞
0 xmexp(−xm) dx

∫ ∞
0 x3exp(−xm) dx

ρcV
∫ ∞

0 exp(−xm) dx
∫ ∞

0 xm+2exp(−xm) dx
= (1 − ε)G

(3)

The modified Rosin–Rammler number,m, and particle
sizeL∗ present the shape of the particle size distribution in
the product. The modified Rosin–Rammler number,m, de-
pends on the operation mode, for example fines destruction
and classified product removal, on the hydrodynamics in the
crystallizer, and on the geometry of the crystallizer. When
the system of crystallization operation is fixed, the value
of the modified Rosin–Rammler number,m, is independent
of operation conditions. The value of the Rosin–Rammler
number can only be obtained by knowing the particle size
distribution under the operation mode. The nucleation rate,
B, is affected by supersaturation of the solution, the sus-
pension density in the crystallizer and the mixing intensity.
The nucleation rate also depends on the scale of operation,
geometry and hydrodynamics of the process. If the nucle-
ation rate is controlled by secondary nucleation, it can be
expressed by the following equation.

B = KNGiM
j
T[f (N, D)]k (4)

As many authors have reported [5–8], the nucleation
rate can be scaled-up based on the mixing intensity. By
using different expressions for the mixing intensity, such as
specified power input or constant tip speed of the impeller,
the power law model of the nucleation rate can be used in
different scales of crystallizers.

The crystal growth rate is mainly affected by supersatu-
ration of the solution. It can be expressed by the following
equation:

G = Kg(1C)g (5)

Together, population balance, mass balance, with nu-
cleation and growth rates give a perfect description of the
crystallization.

3. Architecture of the neural network

The purpose of this work is to develop a neural network
to correlate basic system information and operation condi-
tions to the particle size distribution and to other important
information about the crystallization process. The growth
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rate and nucleation rate under steady state can also be ob-
tained. As introduced above, the particle size distribution is
expressed by Rosin–Rammler equation. Dominant particle
size and the modified Rosin–Rammler number should be
taken into the neural network. Whether or not a crystalliza-
tion system operates under ideal mixing, with the operation
mode fixed, the modified Rosin–Rammler number is con-
stant. It can only be obtained by experiment. Therefore it
was considered as a system parameter and used in the input
layer. Dominant particle size and productivity are important
quantities in a crystallization process and were chosen as
outputs. On the other hand, nucleation and growth rates
depend on the supersaturation in the crystallizer. For steady
state crystallization the supersaturation level depends on the
interaction between the crystal growth rate and nucleation
rate. It cannot be determined from the operation condi-
tions. Therefore, the nucleation and growth rates are also
important data for the analysis of the crystallization pro-
cesses. Therefore, these two parameters were also chosen
as outputs, making four outputs altogether. The following
quantities were chosen to serve as inputs:
• the operation conditions, which are feed concentration,

feed rate, equilibrium concentration which corresponds to
the crystallization temperature, mixing intensity, suspen-
sion density and the volume of the crystallizer,

• the modified Rosin–Rammler number, which is the
operation mode,

• the properties which characterize the chemical, for
example, particle properties,

• the parameters of the nucleation rate.
The parameters in the nucleation rate depend on the proper-
ties of the particle, the geometry and scale of the crystallizer.
The nucleation rate model should describe the behavior of
nucleation for different scales of a crystallizer. The criterion
for the scaling-up of the nucleation rate was based on the
mixing intensity used. With this method, the effect of the
scale of the crystallizer on the particle size distribution is
present. The operation conditions and the properties of the
particle and the parameters of the nucleation rate together
decide the dominant size of the particles. Basic mass bal-
ance determines the productivity. As introduced above, the
Rosin–Rammler equation is used to present the particle size
distribution in the product. The modified Rosin–Rammler
number,m, is an important parameter in describing the oper-
ation mode. For example, if the operation is with classified
product removal, the particle size distribution becomes nar-
row whereas the value ofmbecomes large. It means that the
width of the distribution is presented bym. By knowing the
value ofmand the dominant size of particles the particle size
distribution is predicted. The hydrodynamics of the crystal-
lization affects the modified Rosin–Rammler number,m, in a
way that determines what kind of classification is produced.
We only know the average value of the Rosin–Rammler
exponent as obtained from an operating plant. The hydrody-
namics is different in different locations in the crystallizer
tank. The present method cannot give detailed information

about the effect of hydrodynamics on the crystallization.
For that purpose a more fundamental approach is needed
which is outside the scope of the present work.

Considering the basic equations in the theory section, it
can be seen that, in order to simulate the crystallization,
the properties of the product, basic information about the
solution and the solid properties, the kinetics parameters,
the operation conditions, and the operation mode parameter
must all be known. For a certain continuous crystallization
process, the properties of the solution and particle, such
as the density of the particle, and the parameters of the
nucleation rate are constant. Therefore, only the operation
conditions, such as the residence time, feed concentration,
mixing intensity, and the parameterm are needed to obtain
the properties of the product. Here, we have a system of
equations that is difficult to solve analytically. Moreover, in
general, the parameters of the nucleation rate are not known.
In this case, the use of a neural network is much simpler.
A very simple neural network, different from the one pre-
sented here, would take information out of an operating
industrial crystallizer and would build a network based on
these data. The network could then be used for simulation
and optimization. This is the conventional use of a neural
network in an industrial process. But such a network would
work only for that single equipment and for a single chemi-
cal whereas in this work we try to develop a neural network
which can be used for most systems used in industrial crys-
tallization. Therefore, the parameters in the nucleation rate
were included in the neural network of this work.

The architecture of a multi-input and multi-output neural
network is shown in Fig. 1. Input of the neural network is at
two stages, one is the neural network layer and the other is
the user layer. The actual input layer of the neural network
is calculated from the user layer. The two input layers are
used for the following reasons. The user layer can be used
as neural network input, but the input layer in Fig. 1 has
fewer inputs which results in the network being easier to

Fig. 1. The architecture of a neural network for simulation of crystalliza-
tion.
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train. The input layer can also be used such that the user
has to calculate some inputs himself. The architecture of the
network shown in Fig. 1 is easy to use and such a network is
easy to train. There are 13 inputs in the user input layer, nine
inputs in the neural network input layer and four outputs in
the output layer.

4. Training and results

Training the neural network is an important step for de-
veloping a useful neural network. In order to have a range
of variables that are valid in most industrial systems, the
range of the neural network inputs and outputs were defined
as follows:
Stirrer tip speed: 1.5–4.0 m/s,
Rosin–Rammler number: 1.0–3.0,
Suspension density: 20–320 kg/m3,
Product of the particle density and shape factor: 520–4420,
Residence time: 1000–6000 s.
Parameters in the nucleation rate model:

B = KNGiM
j
Tvk

t (6)

where KN = 1.2 × 107–9.6 × 1024, i = 1.0–2.5,
j = 0.8–1.5, k = 1.0–3.7.

The range of the output:
Productivity: 4.09× 10−3–0.1 kg/m3 s,
Dominant size: 1.03× 10−5–1.82× 10−3 m,
Growth rate: 1× 10−9–1× 10−7 m/s,
Nucleation rate: 2.07× 103–1× 1010 #/m3 s.
The data for training and testing the neural network are

produced by solving the basic equations of the Toyokura
design theory, Eqs. (1)–(5). 1500 sets of data were produced
and used to train the neural network. The result of rough
training to find the number of suitable hidden nodes are
shown in Fig. 2. From this figure it can be seen that the
average error of the training data and test data is very small
when the number of hidden nodes is larger than 14.

Based on the results shown in Fig. 2, 16 hidden nodes
were selected for accurate training of the neural network.

Fig. 2. The average errors of the training data and test data defined as
relative mean deviations.

The results of accurate training were that the average error as
relative mean deviation for all outputs was 0.097% and the
mean correlation coefficient was 0.9994. Another 1500 sets
of data were produced and used to test the neural network.
The relative mean deviation for the test data was 0.100%. It
is clear that the neural network describes the crystallization
system very well.

5. Verification of the neural network

The purpose of the verification is to show that the neu-
ral network can produce the same results as the theoretical
model. The results should also be similar to experimentally
obtained data. This part of the work is presented in Section
6.

The simulated results of the relationships between the
inputs and outputs of the neural network have been verified
by solution of the basic equations. The results predicted by
the neural network were compared with the results obtained
from solution of the fundamental equations. The necessary
test inputs for the neural network were chosen randomly
within the interval used for training the network; they were
not used in the training of the neural network. The accuracy
of the neural network was expressed by the relative mean
deviation.

Typical results for the effect of residence time on the
productivity, dominant size of particle, nucleation rate and
growth rate are shown in Figs. 3–6. The input data used
for the neural network and fundamental equations are as
follows:
Stirrer tip speed: 2.196 m/s,
Rosin–Rammler number: 1.578,
Suspension density: 196.3 kg/m3,
Residence time: 1000–6000 s,
Product of the particle density and shape factor: 3907.

Fig. 3. The relationship between the residence time and productivity. “Cal”
refers to the results obtained by solution of the fundamental equations.
“Sim” refers to the results obtained with the neural network simulation.
All figures use this same notation.
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Fig. 4. The relationship between residence time and dominant size.

Fig. 5. The relationship between residence time and growth rate.

Fig. 6. The relationship between residence time and nucleation rate.

Parameters in the nucleation rate model (by Eq. (6)):

B = KNGiM
j
Tvk

t

whereKN = 1.2×1015, i = 1.421,j = 1.194 andk = 1.31.
The average training errors as relative mean deviations in

percent for each output are:

Productivity: 0.29; dominant size: 0.722,
Growth rate: 0.464; nucleation rate: 1.63.
For the relationship between the residence time and pro-

ductivity as shown in Fig. 3 the neural network works very
well. There are nearly no differences between the values
predicted with the neural network and those from funda-
mental equations. The productivity decreases with increas-
ing residence time because the feed rate, feed concentration
and crystallization temperature are constant.

The simulated results of the neural network for the rela-
tionship between the residence time and dominant size is
shown in Fig. 4. The error appears in the range where the
residence time is smaller than 1800 s. However, the average
error as relative mean deviation is still very small, 0.722%.
The crystal size is affected mainly by the growth rate and
residence time. The increase in dominant size caused by
increasing residence time is shown in this figure.

The relationship between the residence time and crystal
growth rate are shown in Fig. 5. An increase in residence
time will result in a decrease in the supersaturation in the
mother liquor. Consequently, the growth rate decreases. The
effect of residence time on the crystal growth rate is clearly
shown in this figure.

The results obtained with the neural network and by solu-
tion of fundamental equations for the relationship between
residence time and nucleation rate are shown in Fig. 6. It
shows that the nucleation rate was simulated very well by
the neural network when the residence time is larger than
1500 s.

6. Verification with experimental data

As shown in Section 5, the neural network can produce
the same results as the solution of the basic theoretical
equations. It means that the model of the neural network is
correct. In this part of the work, we are going to verify the
neural network model with experimental data. The work
will be done with the following method. The basic opera-
tion conditions will be the same as those for the experiment.
The parameters in the nucleation rate were obtained with
experimental results. Then the neural network simulated the
steady state nucleation rate. It was compared with the data
obtained experimentally under steady state. In this way it
can be proved that the neural network can produce reliable
results. For this purpose, the results produced by the neural
network developed in this work were verified by experi-
mental data presented by Qian et al. [8,9]. They measured
the crystal growth rate and nucleation rate in different sizes
of crystallizers for potassium chloride in water solution.
The nucleation rate and growth rate can be expressed as

B = 4.65× 1022G2.78M1.21
T V 3.79

t (7)

G = 2.32× 10−5
(

1C

C∗

)0.91

(8)
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Fig. 7. Comparison between the simulated results and experimental data
presented by Qian et al. [8] for the relationship between the stirrer tip
speed and the parameters of crystallization kinetics.

The relationship between crystallization kinetics and im-
peller tip speed,Vt, was measured for different operation
conditions. The measured data presented by Qian et al. and
simulated results with the neural network have been shown
in Fig. 7. From the figure it can be seen that the simu-
lated results fit well to the experimental ones. This means
that having the parameters in the nucleation rate equation
available, the neural network can produce results similar to
experimental data.

It is to be noted that we have verified firstly that the
neural network produces the same results as solution of the
system theoretical equations and secondly that the neural
network produces the same nucleation rates as experimental
data. We have not carried out verification of all the output
variables against experimental data. However, the theoretical
equations we are using here have shown that the neural
network is verified experimentally.

7. The method of use of the neural network

The neural network simulator needs information about
the basic properties of the chemicals, for example particle
density and shape factor, and the kinetic parameters. The
kinetic parameters should be obtained experimentally. The
kinetic parameters should come from a crystallizer similar
in geometry to the real crystallizer used. In this case, the
crystal size distribution is available from the same experi-
ments from which the kinetic data have been obtained. The
Rosin–Rammler number,m, will easily be obtained from the
particle size distribution. When the basic input information
is available, the neural network can simulate the crystalliza-
tion process when the values defining the basic operation
conditions are varied as shown in the section describing ver-
ification. The neural network gives the results of producti-
vity and dominant particle size. The crystal size distribution

can be calculated with the Rosin–Rammler number,m, and
the dominant crystal size. This information is usually a re-
quirement for a crystalline product in an industrial process.

This neural network can also be used to determine the
volume of crystallizer and the stirrer speed for a known ge-
ometry of the crystallizer. The method for designing a crys-
tallizer is as follows. The specified dominant size of product
and the production rate are required. The neural network in-
put related to the crystallizer volume is the residence time.
Therefore, the relationship between the residence time, pro-
ductivity and the particle size will be found by the neural
network. When the input range of the residence time is suf-
ficient, the dominant crystal size is found as the output. The
corresponding productivity is also read. From the residence
time and productivity, the product rate for unit volume of
crystallizer is calculated. Therefore, the crystallizer volume
is calculated by the production rate of unit volume of the
crystallizer. Different mixing intensities are used to find
out a suitable impeller tip speed. The design procedure is
shown in Fig. 8. The reliability of the design of the crys-

Fig. 8. The design procedure using the neural network: (a) the relationship
between residence time and productivity: the tip speeds of the impeller
are 1.5–3.0 m/s; (b) the relationship between residence time and dominant
size.
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tallizer depends on the accuracy of the measured modified
Rosin–Rammler number,m, and the parameters in the nucle-
ation rate model. If the modified Rosin–Rammler number,
m, was measured based on the particle size distribution pro-
duced from a large-scale crystallizer, and the parameters in
the nucleation rate model were obtained based on a different
scale of a geometrically similar crystallizer, the calculated
volume of the crystallizer may be assumed reliable.

8. Conclusions

A neural network for simulating steady state industrial
crystallization was developed in this work. The results ob-
tained from the neural network were verified by theoretical
equations and experimental data. This neural network can be
used to simulate steady state crystallization processes and to
design a crystallizer. The accuracy of the simulated results
depends on the parameters of the nucleation rate model and
on the measured modified Rosin–Rammler number,m. The
neural network covers many crystallization systems and
might be applied to several continuous operation modes, in-
cluding cooling crystallization and evaporation crystalliza-
tion, with fines destruction and classified product removal,
size independent crystal growth and size dependent crystal
growth. Theoretically, this neural network could be used for

any system under any steady state operation conditions, and
for any operation mode, if the ranges of the inputs and out-
puts are those as used in the training.
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